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Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) is associated with
changes in brain functional connectivity (FC). These changes may be related to the mechanism of action of rTMS and
explain the variability in clinical outcome. We examined changes in electroencephalographic FC during the first rTMS
treatment in 109 subjects treated with 10Hz stimulation to left dorsolateral prefrontal cortex. All subjects subsequently
received 30 treatments and clinical response was defined as ≥40% improvement in the inventory of depressive
symptomatology-30 SR score at treatment 30. Connectivity change was assessed with coherence, envelope correlation, and
a novel measure, alpha spectral correlation (αSC). Machine learning was used to develop predictive models of outcome for
each connectivity measure, which were compared with prediction based upon early clinical improvement. Significant
connectivity changes were associated with clinical outcome (P < 0.001). Machine learning models based on αSC yielded the
most accurate prediction (area under the curve, AUC = 0.83), and performance improved when combined with early clinical
improvement measures (AUC = 0.91). The initial rTMS treatment session produced robust changes in FC, which were
significant predictors of clinical outcome of a full course of treatment for MDD.

Key words: repetitive transcranial magnetic stimulation (rTMS), depression, functional connectivity, machine learning,
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Introduction
Major depressive disorder (MDD) is increasingly conceptualized
as a disorder of brain networks (Fornito and Bullmore 2015;
Kaiser et al. 2015). Network dysregulation has been reported in

the fronto-parietal control, dorsal attention, and default mode
networks, with both increased and decreased resting-state
functional connectivity (rsFC) reported in comparisons of MDD
and healthy control subjects (Kaiser et al. 2015; Philip et al.
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2018). MDD appears to be associated with altered cortico-
thalamic connectivity, which plays a role in regulating cogni-
tive processes and circadian processes (Llinas et al. 2005).
Dysregulation of these connections may result in a syndrome
of thalamocortical dysrhythmia (Llinás et al. 1999; Vanneste
et al. 2018).

Repetitive transcranial magnetic stimulation (rTMS) is a
non-invasive neuromodulation technique that has well-
established clinical efficacy for MDD (Burt et al. 2002; George
et al. 2010; Carpenter et al. 2017). rTMS modulates brain activity
not only at the stimulation target, but also has network-wide
effects that may be facilitatory or inhibitory (Fox, Halko, et al.
2012; To et al., 2018). The therapeutic benefit of rTMS may in
part be based upon resetting thalamocortical connectivity
(Peters et al. 2016; To et al., 2018).

Both the clinical benefits of rTMS (Mutz et al. 2018) and the
effects of rTMS on rsFC are quite variable (Fischer et al. 2016;
Tik et al. 2017). Variability in pre-treatment rsFC measured
with functional magnetic resonance imaging (fMRI; Fox,
Buckner, et al. 2012; Ge et al. 2017; Fettes et al. 2018) as well as
treatment-emergent changes measured with electroencepha-
lography (EEG) or magnetoencephalography (Pathak et al. 2016;
Kito et al. 2017) are related to differences in treatment outcome.
These findings suggest that changes in FC may be related to the
mechanism of action of rTMS and may serve as biomarkers of
outcome (Fidalgo et al. 2014; Leuchter et al. 2015; Leuchter and
Corlier 2018).

EEG measures have been proposed as practical and reliable
biomarkers for treatment outcomes in MDD (Fidalgo et al. 2014;
Leuchter et al. 2015; Leuchter and Corlier 2018). Previously
examined EEG biomarkers include motor cortex excitability
(Fitzgerald et al. 2004; Oliveira-Maia et al. 2017), ERPs (Price
et al. 2008; Arns et al. 2012), EEG band power (Micoulaud-
Franchi et al. 2012; 2013; Woźniak-Kwaśniewska et al. 2015;
Bailey et al. 2017), individual alpha frequency (IAF; Price et al.
2008; Arns et al. 2012), local frontal midline connectivity (Bailey
et al. 2017), asymmetry (Price et al. 2008), cordance (Arns et al.
2012), and EEG complexity measures (Arns et al. 2014). Results
with some of these methods have been promising, but many
have been examined in small samples without cross-
validation, limiting their clinical generalizability (Widge et al.
2013; Krepel et al. 2018).

Treatment-emergent TMS-EEG measures (Fischer et al. 2016;
Sun et al. 2016; Tik et al. 2017) is a promising method that can
measure the responsivity of brain networks to therapeutic
stimulation, and which may capture more specific associations
with outcome than pre-treatment measures alone (Leuchter
et al. 2014). We performed this study with two goals: (1) to uti-
lize TMS-EEG to measure changes in connectivity during the
first rTMS treatment, and (2) to utilize these changes to con-
struct predictive models of clinical outcome from a full course
of treatment. We applied machine learning with rigorous train-
ing and testing performance to construct models to predict
response to a course of 30 rTMS treatments based upon TMS-
EEG data recorded in the first rTMS session. We focused on the
alpha (α) frequency band because it comprises the rTMS stimu-
lation frequency and represents the best characterized thala-
mocortical rhythm, and compared the performance of three
neurophysiologic connectivity measures: coherence, envelope
correlation, and a novel measure of spectral correlation in the
alpha frequency band (αSC). We examined a large sample of
patients undergoing rTMS treatment for MDD (n = 109) as well
as a more homogeneous subsample receiving predominantly
unilateral left (UL) rTMS treatment (n = 68). We also compared

the performance of these neurophysiologic predictors with the
accuracy of prediction based upon early changes in depressive
symptoms during rTMS treatment.

Methods
Subjects

Subjects were 121 individuals (mean age 47.0, SD = 15.3, female = 59)
with a primary diagnosis of MDD confirmed by the MINI
International Diagnostic Interview (for details, see the
Supplementary Information). The research protocol was
approved by the UCLA IRB and all subjects provided informed
consent prior to any procedures being performed. Subjects con-
tinued to receive previously prescribed psychotropic medication
concurrent with rTMS and underwent medical clearance before
receiving rTMS treatment. Twelve subjects were excluded from
the study because of technical difficulties with EEG recording or
dropout before treatment 15, yielding a final sample of 109.

Clinical Outcome

Outcome was based upon the percentage change in the 30-item
inventory of depressive symptomatology—self-rated (IDS-30
SR; Trivedi et al. 2004) score from pre-treatment baseline to
immediately following treatment 30, with clinical response
defined as a decrease of ≥40%. This criterion was more clini-
cally meaningful in this sample of highly medication-resistant
MDD subjects than the 50% decrease employed in many phar-
macotherapy studies, and yielded roughly balanced cell sizes of
responders and non-responders.

rTMS Procedures

rTMS treatments were performed with either the Magstim
Super Rapid Plus 1 stimulator with a 70-mm Double Air Film
coil (Magstim, Whitland, South Wales, UK) or the Neuronetics
Neurostar treatment system (Neuronetics, Malvern, PA, USA).
Active motor threshold (MT) determination was performed
using electromyography monitoring prior to the first treatment.
The initial treatment session consisted of 3000 pulses delivered
to the left DLPFC target (defined using the Beam F3 method;
Beam et al. 2009) at a frequency of 10 Hz using 40-pulse trains,
a 26-s inter-train interval, and an intensity of up to 120% MT.
Sixty eight subjects continued to receive unilateral left (UL)
treatment for the majority of their treatments (>15/30 ses-
sions), while 41 subjects, who did not tolerate or respond to UL
stimulation, were changed to sequential bilateral treatment for
the majority of treatments (10 Hz at left DLPFC, followed by 1-
Hz stimulation at the right DLPFC target). See Supplementary
Information for further details on rTMS methods and the clini-
cal treatment paradigm.

EEG Recording

Sixty-four-channel EEG data were recorded at 2000-Hz sam-
pling rate during the first treatment using the ANT Neuro TMS-
compatible EEG system (Advanced Neuro Technology [ANT];
Enschede, the Netherlands) and converted to a common aver-
age reference offline for analysis. All recordings included at
least 5min of baseline resting-state EEG, the full treatment,
and at least 5min of post-treatment recording.
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EEG Data Processing

Preprocessing
Semi-automated EEG preprocessing for artifact detection was
performed using the ICA-based FASTER algorithm (Nolan et al.
2010). Data then were visually inspected to reject any epochs
containing residual artifact.

Individual Alpha Frequency Determination
A dominant alpha frequency peak was determined for each
subject. This peak, a highly stable and reproducible measure
within-subjects over time (Grandy et al. 2013) was defined as
the highest spectral peak within the 7–13 Hz alpha range
(Klimesch et al. 2003) that surpassed a 95% confidence interval
of the mean spectral power in the same range derived from a
2000-samples bootstrapped distribution. This alpha peak was
used to form the center of a 4-Hz IAF band (peak ± 2 Hz) calcu-
lated per subject. If the subject had no alpha peak, the alpha
range centered at 10 Hz was chosen for further analysis.

Data Pipeline and Analysis

Neurophysiologic Connectivity Measures
We compared three measures that reflected different aspects of
changes in neurophysiologic connectivity in the IAF band in
response to rTMS stimulation: (a) coherence, (b) envelope corre-
lation, and (c) a novel measure, αSC. Coherence is the correla-
tion of amplitude and phase, envelope is the correlation of the
amplitude only, and αSC is the similarity of the spectral wave-
form of the alpha band across regions and which may repre-
sent the transmissibility of alpha power through a distributed
area after TMS. Because αSC examines shared activity between
two electrodes, it has face validity as another indicator of FC.
See Fig. 1B and Supplementary Information for details on calcu-
lation and comparison of all connectivity metrics.

For each of the three neurophysiologic measures, the
change in connectivity from pre-treatment baseline to immedi-
ately after the first rTMS session was calculated for seeds in left
and right DLPFC and all other channels. We defined the seed
regions as the channels at/around stimulation site because this
is where rTMS-induced changes in connectivity originate. This
resulted in a total of 783 features for each predictor (Fig. 1A, left
frontal seeds marked in yellow, right frontal seeds marked in
blue). See Supplementary Information for detailed calculation
of connection numbers (Supplementary Table 1). Additionally,
we performed a correlational analysis to evaluate the content
similarity of the three measures (see Supplementary
Information and Supplementary Figure 1).

Statistics
To determine whether depression severity was predictive of
treatment outcome, a t-test was used to compare baseline IDS-
SR 30 scores for responders versus non-responders. To evaluate
whether any medication was over-represented in responder or
non-responder groups, we examined differences in response
for subjects receiving each of the five most common categories
of medication (antidepressants, anxiolytics and sedative hyp-
notics, antipsychotics, stimulants, and anticonvulsant mood
stabilizers) using ANOVA with each medication as a between-
subjects factor. We examined differences in FC between
responders and nonresponders at pre-treatment baseline by
computing 783 pairwise Wilcoxon sum ranking tests comparing
each feature. A non-parametric test was used because normal
distribution was not assumed, and P-values were corrected for

multiple comparisons using false discovery rate. For the post-
rTMS condition, we examined effect sizes (Cohen’s d) of the
overall (average) feature distributions for responders and non-
responders.

Elastic Net Model Analysis
We built predictive outcome models using the elastic net (EN)
method (Zou and Hastie 2005), which assessed 783 features
simultaneously to identify those that were most predictive of
clinical response. EN combines the most discriminative fea-
tures, excludes the least significant, and optimizes classifica-
tion accuracy by shrinking coefficients of correlated predictors
towards each. The EN algorithm for selection of the most infor-
mative variables minimizes the problem of overfitting that is
common with other approaches to stepwise feature selection.
EN models were developed first for the entire sample (N = 109),
partitioning the sample into 70% for training purposes using
10-fold cross-validation and 30% for testing (predictions); this
procedure was repeated 100 times (Fig. 1C) (see Supplemental
Information for additional machine learning methods). The top
10 features most consistently selected across the 100 trained
models were analyzed in terms of their topography (Fig. 1D).
Subsequently, separate models also were built for UL group (n = 68).
Model performance was evaluated using calculations of receiver
operating characteristic (ROC) area under the curve (AUC), as well as
sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and classification accuracy. This procedure was
applied to all three connectivity metrics separately.

Finally, logistic regression was used to compare the predic-
tive performance of connectivity biomarkers with that of early
response to treatment. IDS-30 SR score at baseline as well as
percent change in IDS score at 1 week and 2 weeks were used
alone and in combination with the connectivity measure to
determine the best classifier. EN models were created both for
the entire sample and the separate UL cohort using the stron-
gest predictor.

Results
Clinical Response

rTMS treatment was significantly associated with clinical
improvement measured by the percent change in the IDS-30 SR
(n = 109, t-statistic = −9.44, P < 0.001), and 45% of subjects met
response criteria. There was no significant difference between
responders and non-responders in terms of age (46 ± 15.2 vs.
48.9 ± 15.3), gender (49% male vs. 58% male), or severity of base-
line depression (44.3 ± 9.5 vs. 41.3 ± 12.2, respectively)
(Supplementary Table S2). There was no effect of the five clas-
ses of concomitant medication on clinical outcome (P = 0.11).

Relationship Between Neurophysiologic Measures and
Treatment Outcome

Wilcoxon rank sum tests assessing the difference in FC
between responders and non-responders at baseline did not
yield any significant results after correction for multiple com-
parison, with significant overlap in pre-treatment connectivity
distributions of the two groups (Fig. 2, top row). In contrast,
treatment-emergent changes in connectivity showed a clear
separation of distributions (Fig. 2, bottom row), with medium
effect sizes for coherence and envelope correlation (left and
middle columns) and a large effect size for αSC (right column)
(Cohen’s d = 0.84, 1.22, and 1.52, respectively). On average, non-
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responders had higher connectivity values than responders in
coherence (average 0.015 vs. 0.004) and envelope correlation
(average 0.00 vs. −0.022), while non-responders showed lower
αSC values (average −0.04 vs. 0.01).

Classification of Responders/Non-responders

EN models showed that αSC yielded more accurate and repro-
ducible classification than either coherence or envelope correla-
tion. While AUCs of training performance were only marginally
larger for αSC than for coherence and envelope correlation (83.2,
82.5, and 82, respectively), testing performance showed that αSC
classification was notably more stable and reproducible (66.1,
52.7, and 57.8, respectively; Fig. 3A; Table 1). The αSC classifier
also had notably higher sensitivity and NPV than did either

coherence or envelope correlation, although somewhat lower
specificity on testing performance (Table 1).

The topography of the top 10 connections comprising each
classifier across 100 trained models differed notably among the
three measures (Fig. 3B). EN for coherence (left panel) and enve-
lope correlation (middle panel) were comprised of connections
from frontal to temporo-parietal nodes, while for αSC (right panel)
was comprised primarily of connections between left frontal seeds
(near the stimulation site) and contralateral fronto-temporal loca-
tions. The connections included in the EN models, and the per-
centage of cross-validation runs in which they were selected,
varied across the three measures (Supplementary Table 3). In gen-
eral, the numeric values for coherence and envelope connections
were higher among non-responders than responders, while the
opposite was true for αSC (Supplementary Fig. 2). This indicated

Figure 1. Illustration of the analysis pipeline. (A) Locations of seed electrode locations for connectivity analyses, with the nine left prefrontal seeds shown in yellow

(Fpz, Fp1, AF3, AF7, Fz, F1, F3, F5, F7) and the seven right prefrontal seeds shown in blue (Fp2, AF4, AF6, F2, F4, F6, F8). All electrode locations (N = 61) were utilized as

connectivity nodes. Connectivity pairings of selected left and right seeds with all other electrodes yielded a total of 783 connectivity features per subject. (B) Examples

of the three connectivity metrics of coherence, envelope correlation, and αSC for one responder (upper row) and one non-responder (bottom row). Magnitude squared

coherence takes amplitude and phase information into account. Envelope correlation is an amplitude-amplitude coupling measure. αSC is the similarity of the spec-

tral waveform between two channels, which was found to be more similar for responders than non-responders. (C) Elastic net regularization was used to build a

model for each neurophysiologic measure that distinguished between responders and non-responders. Models were subjected to training and testing cross-

validation repeated 100 times to minimize overfitting and spurious classification due to random sampling effects. For each repetition, the full sample (N = 109) was

divided into 70% training and 30% testing sets. For each run, training cross-validation consisted of splitting the training set 10-fold, training the model on 9/10-folds

and using the 10th-fold to make predictions. This procedure was repeated 10 times, so that each fold served as both a training and testing set. Testing validation con-

sisted of applying the model obtained from training to make predictions about the test data set. (D) For each neurophysiologic measure, the connections that most

reliably predicted outcome in validation were identified. These consisted of the 10 features most consistently selected in all training models across 100 repetitions

compared among the predictors. These features then were plotted topographically (right panel).
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that eventual treatment response was associated with a decrease
in coherence and envelope correlation and an increase in αSC in
the initial rTMS treatment session.

Logistic regression using 2-week IDS-30 SR percent change
showed AUCs of 74.4 and 72.7 (training and testing perfor-
mance, respectively; Fig. 3C). Further analyses were performed
using αSC because of its stronger association with outcome
than either envelope correlation or coherence. Logistic regres-
sion combining αSC and early clinical response improved clas-
sification accuracy with AUCs of 85.2 and 75.6 (Fig. 3D), while
neither baseline nor Week 1 change in IDS-30 SR significantly
improved classification accuracy based upon αSC features alone
(Supplementary Table S4). EN modeling performed on the UL
treatment sample showed increased classification accuracy in
subjects who received the more homogeneous left-sided treat-
ment. Classification of responders versus non-responders to UL
treatment showed AUCs of 87.5 and 75.6 when using αSC only,
79.2 and 79.1 for IDS-30 SR only, and 91 and 81.8 in combination
of αSC with early symptom change (Table 2).

Discussion
We examined changes in neurophysiologic connectivity result-
ing from the first rTMS treatment session using three comple-
mentary neurophysiologic connectivity measures. Rigorous
machine learning methods using training and testing cross-
validation demonstrated that changes in all connectivity

measures were significant predictors of outcome. A novel mea-
sure, αSC, yielded more accurate and reproducible prediction of
response than traditional connectivity measures of coherence
or envelope correlation. In a subset of subjects receiving UL
treatment, a combination of the αSC biomarker and early
symptom change during treatment resulted in a classification
accuracy of 91% training and 82% testing performance.
Connectivity among electrode locations overlying the bilateral
DLPFC and the fronto-temporal and supramarginal regions had
the strongest association with treatment outcome. This study
is an important extension of previous fMRI studies, demon-
strating for the first time that TMS-EEG measures can detect
treatment-emergent connectivity changes after a single rTMS
treatment. The fact that outcome could be predicted based on
very early connectivity changes could be highly useful, and
suggests that αSC changes may constitute a reliable biomarker
for early prediction of response to rTMS treatment in MDD.

The three metrics examined here capture different aspects
of connectivity: coherence measures phase and amplitude
covariance of two signals based upon frequency bins; envelope
correlation evaluates the covariance of amplitudes of two time
series; and αSC indicates the similarity of two frequency spec-
tra averaged over time. The finding that both αSC and envelope
correlation produced predictive models that were superior to
coherence suggests that phase and temporal information
inherent in coherence are less robust for characterizing the
therapeutic effects of rTMS. Such information may be non-

Figure 2. Treatment-emergent connectivity differences. Top row: histograms of mean values for all features for responders (red) and non-responders (blue) before the

first rTMS treatment. None of the features differed significantly between groups. Bottom row shows differences in treatment-induced connectivity changes, where

group separation is more apparent. Coherence and envelope correlation (left and middle column) showed smaller group separation than αSC (right column) (respec-

tive effect sizes Cohen’s d = 0.84; 1.22; 1.52). For coherence and envelope correlation, non-responders had on average greater connectivity changes than responders.

Inversely, change in αSC was on average greater for responders.
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Figure 3. AUCs and feature topography for all EN models. (A) AUCs for all three predictors for training (green) and testing performance (gray) averaged over 100 repeti-

tions. Coherence (training and testing): 82.5 and 52.7; Envelope correlation: 82 and 57.8; αSC: 83.2 and 66.1, with highest AUCs for αSC. (B) The corresponding top 10

selected features per predictor across all 100 trained models. EN models for coherence and envelope correlation showed a diffuse coupling pattern, while αSC showed

a more focal connectivity. (C) AUCs for a logistic regression model using solely the early clinical response to rTMS treatment: 74.4 and 72.7. (D) AUCs for a logistic

regression model combining the top αSC features and the early clinical response: 85.4 and 77.8, which represented the overall best predictive model.

Table 1 Summary of training and testing EN model performance for the total sample for all three neurophysiologic measures. AUC, area
under receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value. Numbers represent mean and
(SD) values across the 100 repetitions

Coherence Envelope correlation αSC IDS-30 SR only αSC with IDS-30 SR

Training Testing Training Testing Training Testing Training Testing Training Testing

AUC 82.5 (3.6) 52.7 (8.5) 82.0 (4.0) 57.8 (9.8) 83.2 (3.3) 66.1 (6.8) 74.4 (3.3) 72.7 (8.1) 85.4 (2.6) 77.8 (6.8)
Accuracy 78.1 (3.6) 61.8 (5.4) 77.4 (3.5) 64.8 (5.3) 79.2 (3.4) 69.3 (6.0) 74.3 (2.6) 75.1 (6.0) 82.3 (2.6) 79.2 (6.0)
Sensitivity 73.5 (10.3) 34.8 (27.1) 69.6 (11.5) 44.4 (25.7) 76.9 (8.4) 67.1 (19.2) 68.0 (5.1) 64.1 (16.5) 80.0 (5.8) 75.7 (13.3)
Specificity 81.9 (8.4) 82.7 (16.9) 83.9 (8.7) 80.8 (15.6) 81.1 (7.7) 70.9 (13.3) 79.6 (3.5) 83.6 (9.6) 84.2 (5.1) 81.9 (9.5)
PPV 78.2 (6.8) 58.2 (31.3) 79.7 (7.5) 67.7 (21.3) 78.1 (6.3) 64.9 (10.3) 73.7 (3.5) 77.2 (10.2) 81.2 (4.6) 77.6 (8.4)
NPV 79.4 (5.5) 63.8 (7.4) 77.5 (5.4) 67.2 (8.4) 81.3 (4.7) 75.6 (9.5) 75.0 (3.0) 76.0 (7.4) 83.7 (3.6) 82.2 (7.7)

Table 2 Summary of EN model performance for the UL treatment subgroup. AUC, area under receiver operating characteristic curve; PPV, pos-
itive predictive value; NPV, negative predictive value. Numbers represent mean and SD values across the 100 repetitions

αSC IDS-30 SR αSC + IDS-30 SR

Training Testing Training Testing Training Testing

AUC 85.2 (2.9) 75.6 (8.9) 79.2 (3.1) 79.1 (7.6) 91.0 (2.7) 81.8 (8.7)
Accuracy 82.4 (3.0) 77.1 (6.5) 80.2 (3.1) 80.7 (6.9) 86.5 (2.9) 81.4 (7.2)
Sensitivity 79.5 (7.1) 71.6 (14.2) 75.3 (5.2) 77.5 (10.9) 87.7 (5.9) 81.0 (11.6)
Specificity 84.7 (5.2) 81.3 (11.0) 86.4 (4.3) 84.6 (10.5) 84.8 (6.4) 81.8 (12.3)
PPV 81.7 (4.7) 76.6 (9.9) 87.8 (3.4) 86.7 (7.9) 88.4 (4.0) 85.5 (9.0)
NPV 83.6 (4.4) 79.5 (7.6) 73.4 (4.1) 76.5 (9.1) 85.0 (6.0) 79.3 (10.6)
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stationary and actually obscure the predictive information con-
tained in the frequency signal. The relatively strong prediction
based upon spectral similarity is consistent with the observa-
tion that frequency spectrum coupling shapes brain network
connectivity (To et al., 2018). rTMS stimulation may entrain
brain activity in a manner similar to that of sensory input (Thut
et al. 2011; Herrmann et al. 2016), for which frequency coupling
is an essential component of information transfer.

Higher αSC among responders suggests that increased simi-
larity in the power spectrum induced by the first rTMS session
reflects a form of increased functional coupling or entrained
resonance between cortical sites. Conversely, lower coherence
and envelope correlation among responders may indicate that
rTMS stimulation induces strong non-stationary changes in
both amplitude and phase synchronization, resulting in the
appearance of lower average coupling over the span of min-
utes. Further investigation of temporal fluctuations would be
necessary to further elucidate the nature of the rTMS-induced
physiological changes.

αSC EN models most consistently included connections
among electrodes overlying bilateral middle and inferior fron-
tal, superior temporal, postcentral, and supramarginal cortices.
These regions can be seen as parts of multiple networks known
to be dysregulated in MDD, including the fronto-parietal control
network, default mode network and also the salience network
(Kaiser et al. 2015; Downar et al. 2016; Fischer et al. 2016). It is
challenging to assign these regions to one specific network
exclusively. Interestingly, the distribution of these connections
corresponds most closely to an rTMS-responsive network
detected with resting-state fMRI that included the dorsal cingu-
late and posterior dorso-medial prefrontal cortices, DLPFC, infe-
rior parietal lobule, inferior frontal cortex, and posterior
temporal lobes described by Tik and colleagues (Tik et al. 2017).
These authors suggested that this represents a cognitive con-
trol network linking default mode and attention network com-
ponents at the nodes of ACC and the inferior parietal lobules,
all of which have been reported to be dysregulated in mood
and anxiety disorders (Williams 2016; Tik et al. 2017).

In contrast, the coherence and envelope correlation EN
models emphasized connections among electrodes overlying
the superior frontal locations and the middle temporal and
superior occipital cortices. These locations coincide with nodes
that fall into the fronto-parietal control and the dorsal atten-
tion networks. While these networks have been reported to
show decreased connectivity in resting-state fMRI studies of
MDD (Kaiser et al. 2015), similar regions have been shown to
have higher theta and alpha frequency FC measured with
coherence (Leuchter et al. 2012). It is not entirely clear why
rTMS response was associated with a decrease rather than
increase in these connections. Future studies should aim to
elucidate the relationships among EEG and fMRI connectivity
measures.

We showed that treatment-emergent changes in connectivity
allow for a better separation of responders and non-responders
than based solely on the pre-rTMS connectivity. The accuracy of
this biomarker compares favorably with pre-treatment predic-
tors previously reported (Widge et al. 2013). We propose that dis-
criminative features are related to the brain networks’ ability to
respond to stimulation. These may be carry-forward effects of
rTMS stimulation into the post-stimulation period that may last
30minutes or longer following the cessation of stimulation and
they may be of non-stationary nature (Rosanova et al. 2009;
Thut and Pascual-Leone 2010; Vernet et al. 2012; Valero-Cabré
et al. 2017). Average differences between responders and non-

responders in the persistence of these effects in the first five
minutes following cessation of stimulation probably is the basis
for the findings that we report. A future investigation should
address the temporal scale of rTMS-induced aftereffects and
their potential non-stationary nature in more detail.

Classification accuracy was further enhanced by including
measurement of changes in mood after 2 weeks, but not after 1
week or prior to treatment. While the EEG features have the
desirable advantage of being available right after the first treat-
ment, symptoms-change predictors can provide complemen-
tary information to enhance accuracy and further guide clinical
decision-making along the treatment course.

The present results are consistent with previous findings
showing that neurophysiological measures have significant
potential to serve as translational biomarkers of rTMS treat-
ment outcome (Farzan et al. 2016; Sun et al. 2016; Voineskos
et al. 2018). If the usefulness of the αSC TMS-EEG biomarker is
confirmed by future studies, it could help to guide administra-
tion of rTMS. In particular, it could be used to identify those
patients most likely to benefit from a particular rTMS treatment
approach in the initial treatment session, and potentially opti-
mize treatment parameters such as stimulation site or fre-
quency for subsequent treatment sessions. The fact that
classification accuracy was higher in the subject group receiv-
ing more homogeneous primarily left-sided treatment suggests
that the physiological connectivity profiles of patients who ben-
efit from left-sided rTMS may differ from those who improve
with sequential bilateral treatment. A follow-up study should
examine the connectivity features that would be indicative of
whether a patient would experience a better outcome with UL,
sequential bilateral, or other forms of treatment, to assist the
clinician in treatment planning. Additionally, an examination
of effects of 10 Hz stimulation on other frequencies outside the
alpha band should complement the current hypothesis-driven
approach.

The results of the current study should be interpreted in the
context of certain limitations. First, while this was a large
study, it was comprised of patients treated in a clinical setting.
Several rTMS treatment parameters were adjusted based upon
a clinical decision-making paradigm related to tolerability and
response. Because these treatment parameters were not ran-
domly assigned, we cannot precisely determine the role that
adjustments in parameters may have had on outcome and the
biomarker results. Second, the great majority of subjects
received concomitant pharmacological treatment. It is possible
that medication effects contributed to some of the findings
here. Additionally, in any classification study there is some risk
of overfitting the data. However, we have guarded against it by
limiting the number selected features and reporting testing
performance. The fact that accurate and stable predictors of
outcome were identified suggests that the results of this study
may be generalizable, and that the biomarkers identified here
would be useful in clinical practice. Independent replication
studies prospectively validating this biomarker are necessary to
for more conclusive evidence.

Conclusions
Neurophysiologic connectivity changed significantly during the
initial rTMS treatment session, and these changes were signifi-
cant predictors of outcome of a full course of treatment. A
novel measure of connectivity, αSC, detected connectivity
changes that were more accurate and reproducible than other
neurophysiologic measures, indicating that EEG features
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relevant to rTMS outcome were most strongly coded by fre-
quency composition, rather than phase, amplitude, or temporal
dynamics. As a future direction, it would be important to evalu-
ate the functional differences between these connectivity
metrics using a computational or neural modeling approach.
Predictive accuracy was further increased when αSC was com-
bined with a measure of early (2-week) clinical response, which
may be valuable to refine the clinical decision process along
the treatment course. Future research should aim to replicate
these findings in independent patient samples.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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